
RSRE
MEMORANDUM No. 4225,

ROYAL SIGNALS & RADAR
~ .,.ESTABLISHMENT

MATHETMATICAL EQUIVALENCE IN A PRIMITIVE ELLA

Author M B IavI~s

PROCUREMENT EXECUTIVE,
0 MINISTRY OF DEFOX4E,

R SRE MALVERNI,

00

UNLUM?



Royal Signals and Radar Establishment

Memorandum 4225

Title: Mathematical Equivalence in a Primitive Ella

Author: M B Davies (student scientist at RSRE 1987-1988)

Date: August 1988

Summary

The mathematical language £ is defined, which represents circuits in a primitive
subset of Ella containing delays, pairing, CASE (multiplexor) expressions, and re-
cursive or feedback expressions. It is shown how by reduction of expressions in this
language to an approximated finite form, equivalence between expressions can be
tested in finite time.

er, . . ," .

By

A_
Copyright

() Di-t
Controller HMSO London

1988 f

I
.. . . ni l l i ttman



Contents

1 Introduction 2

2 Expressions in £ 3

3 Reduction to E* 7

4 Equivalence In E* 12

5 The Equivalence Theorem 17

6 Conclusion 19

A Technical Definitions 20

B References 22

.... mauaun Il il I• I l l~ i n ] i I I I I ,1



1. Introduction

The language £ has been defined so that al Ella programs can be expressed in
it. Although it is very primitive and does not even have such concepts as functions
or indexing, mechanisms already exist for the transformation of general, high-level
Ella into a form not far removed from the C expression (see (11 and [21). However,
once reduced into C, Ella programs can not be recovered in their original form. For
the purposes of equivalence testing there is no need for this.

Expressions in t are defined inductively from the basic units of type constants
and variables (input signals). Since the definition is inductive, all functions which
I create to operate on such expressions are also defined using structural induction.
However, such functions operate from the top down, breaking expressions into their
component parts as they are applied; while the expressions themselves are defined
from the roots up. This distinction is in practice obvious and in only one case causes
problems.

The mathematical notation used in the definitions is mostly standard; Greek
letters are used to represent general expressions; the letter t usually represents a
general time (natural number); k is used for a general type constant; v and w for
general variable names; 8 for a general type. Capital letters usually indicate sets or
sequences. Sequences are ordered sets, and are listed using angle bracket delimiters,
eg

S = (SI ... S")

Sequences are indexed using a subscript notation, eg A, is the ith element of the
sequence A.

A notation is needed to represent the set of pairs of items. For example, a
compound type is either a basic type or a pair of other compound types. I denote
this sort of structure x s . Such sets are formally defined in Appendix A.

2

Ld



2. Expressions in C

,CS is a structure consisting of:
S types, eg S = {BOOL, NUM, DATA}.
{S.).Es constants, eg SeOOL = (T, F), Sequences S, disjoint.
{IV }s variables, eg a,b,c,in,cntrl-line E VeooL.

Sequences V, disjoint.

E expressions
(-{.}.Es bottom

Each language s contains all the types (with their corresponding enumerated
type constants) and variable names that can be used in expressions in that language.
Expressions in different languages s and Cs, are not directly comparable; they must
be re-expressed in the superset language Csus.

For each type s in the language, there is a 'bottom', I.. This is the undefined
value and is not accessible to the user. Its only function is to serve as the limit value
in the approximation of recursive loops, as will be seen later.

Variables are ordered, perhaps alphabetically. This is to help establish a unique
form for expressions, as is shown at the end of this paper.

2.1 DEFINITION E is the least set s.t.

S, C E VasES
V.cE VaES

delay Attc E E Vca E E, Vt E S, s.t. type(a) = a
pair (a,L) E E Va,fl E E

case O1a:A E E Va E E, VA C E s.t. welldef o (a, A)
recurse pv.a E E Vv E V,, Va E E s.t. welldef, (v, a)

The above defines the syntax of Cs expressions. An expression in E is either a
constant or variable, or constructed out of such by the pair, delay, case or recursion
operators. Illegal expressions, such as badly-typed case expressions, are not allowed:
see Appendix A for definitions of 'type', 'welldefo' and 'welldef,'.

Pairing is the only form of structuring provided: tuples are not needed. Indexing
of pairs is also not required since obviously in an expressional language without
functions, (a, 13)[1) = a and (a, ,8)121 f=. A case statement Io:A outputs at any
time unit, one of the expressions in the sequence A. The expression chosen is indexed
by the value of the chooser a at that time. The recursive operator pv.er outputs the
value of v, where v is let equal to a. Of course, a usually contains some delayed
instance of the dummy variable v, so that a feedback loop is produced. Pictorially,

3



this tan be represented as:

An example of a legal E expression:

(ATATinel, pregister.Dctrl: (AFregister, fine2))

This would correspond to the Ella unit (see 131):

BEGIN
FN REG = (bool: register) -> bool:

CASE ctrl OF t: DEL{f} register.

f: line2
ESAC.

MAKE REG: reg.

LET register = reg.
JOIN register -> rag.
OUTPUT (DEL{t} DEL{t lnel, register)

END

Or in graphical form:

linel

F

line2 4

ctrl

,mJ | i ... . " .. . .. ... . ....



2.2 DEFINITION evaluatel,v E -- x U esS

t E N, Vvaluation
Returns the value of an expresaion given a valuation V.

evaluatev(k) a k, Vk E S,
evaluatet v(v) - the value of v in valuation V at time t.
evaluatev(Aka) e evaluatet-iv(a) t > 0

k t=O
evaluate,,v((a,, 8)) 2 (evaluate,.v(a), evaluate,v(fl))
evaluatel~v(Da:A) Q evaluatejjv (A.)

where n Q i s.t. (Styp.(a)), evaluatetv(a)
evaluate,v(jv.a) evaluate,.v,(a)

where V' VuU i1 { (v-n, evaluate,.v (p v.a))}

This function defines the result of evaluating an expression; in other words, it
gives the semantics of E. A valuation is simply a set which contains a coistant
assignment to each external variable in the expression, at every time unit: that is,
pairs of the form (vt,k) where variable v is to have value k at time t.

The delay operator &kc delays signal a by one time unit. At time 0 it outputs
instead its initialization constant k.

As an example of the evaluation of the case expression, consider 0(a, b):A where
a and b are Boolean variables. The equivalent Ella for this expression is:

CASE (a.b) OF (tt): A,,
(f.t): A2 .
(t.f): A3.
(f,f): A4

ESAC

For each possible value of the chooser (a, b), there must be a corresponding ex-
pression in A. That is, there is no partial choice in L. The order in which expressions
in A are chosen depends on the orderering on the basic enumerated types. The above
example assumes that BOOL = T, F), so the 'True's come first. S 800 L,80 0 L) is the
sequence which contains all possible constant values of (a, b); it is defined in Ap-
pendix A to equal ((T, T), (F, T), (T, F), (F, T)). As you can see, it is simply the cross
product of S8OOL with itself, with the convention that the first position changes more
rapidly.

A recursive expression is evaluated by adding its previous values to the valuation
of its dummy variable.

. . ......... .. .. . •""-"-, -- , ,w u m( m mm mmtn p 5



It is possible, though perhaps lengthy, to express any Ella circuit in E, no matter
how convoluted it is. For example, here is an RS latch:

( UV. F (r, /AW . ,F (V, s):(F, F, F,T)):(F, F, F,T ),

AW. AFO(V.AF0(r, v):(F, F, F, T), s):(F, F, F, T))

F
FF F
T--

r
F

F
F

2.3 DEFINITION
Equivalence in E.

a = iff evaluatetiv() = evaluatetv(O)
Vt = O...oo
V valuations V

Clearly two expressions are equivalent, no matter how they are expressed, if at
every time they evaluate to the same result for every combination of input values.

6



3. Reduction into Finite Expressions E*

Equivalence testing in E is not feasible since the behaviour of compared circuits
must be checked at ill time steps, from 0 to oo. Is there a way to determine circuit
equivalence in finite time? Since the definition of E is by structural induction, we
know that all expressions in E have finite 'size'. Furthermore, we can assume that all
types in C9 are also finite, since they are meant to represent enumerated Ella types.
So it is clear that no circuit expressible in E can have a behaviour that requires
infinite time to characterize. That is, we should be able to find a bound on the
performance of a circuit, after which time we have observed all possible behaviour
from that circuit. The following two functions find this bound.

3.4 DEFINITION depth: F N
Minimum time until all external signals are reaching expression.

depth(k) Q 0, Vk E S,
depth(v) a 0, Vv E V,
depth(Aka) I 1 + depth(a)
depth((ct,0)) * max{depth(a),depth(,)}
depthl(a:A) - max {depth(a), max U"i(tYP(&)) {depth(A,)}}
depth(piv.a) 2 depth (a)

After observing a circuit for 'depth' time units, a state is reached where no more
delay initialization constants are affecting the output. The definition is quite simple,
and merely counts the maximum number of delays to any expression root.

3.5 DEFINITION periodv,d : E - N
V C U.-S V., dEN

Period of longest sequence that expression can produce with constant input.

periodvd(k) a 1, Vk E S,
periodv, (w) a 1, Vw J V
periodvd(v) 2 (size(type(v)))d, Vv E V
periodvd(Aka) m periodv, 4+(a)

periodvd((o, 0)) 2 periodvd(O) x periodv,d(#)

periodvd(Da:A) e periodvd(a) X max{l-[F P,)
VP C {period ,,(Al), ... , periodvd(Ait , type(&))))
s.t. #P < periodv0d(C)

periodvAPw.a) " periodvu(,u.d(a)

7



The behaviour of any circuit, as explained above, must be in some sense periodic:
after a long enough time, the output will begin to repeat, assuming external signals
are held constant. This latter can be assumed because, in equivalence checking,
external signals are given a constant valuation anyway. After time 'depth', if all
external signals are held constant, only the recursive operator is capable of ojginatinit
a non-constant output. The maximum possible period of a recursive loop depends
upon the number of delays in its feedback loop, and the size of its type. For example,
a Boolean loop with a single feedback delay has a maximum possible period of 2,
corresponding to the waveform T,F,T,F, .... In general, a single-delay loop has
maximum period equal to the size of its enumerated type. A Boolean loop with two
feedback delays can at most output a sequence of period 4, eg T,T,F,F,T,T,FF, ..
Hence line 3 in the above definition: the maximum period of a d-delayed loop is the
size of the type raised to the power d.

The maximum period of a pair depends on the periods of its components. For
example, consider the pair of booleans (a, b). Suppose a produces the waveform
T,F .... and b T,T,F,F .... Then the pair has period 4: (T, T), (F, T), (T, F),
(F, F) .... However, if b had instead waveform T,T,F, ... , ie period 3, the pair
would have period 6: (T, T), (F, T), (T, F), (F, T), (T, T), (F, F) .... Obviously,
the period of the pair is in general the lowest common multiple of the periods of
its components. Unfortunately, the mijujLple of the periods of the components must
actually be taken, since the mximmpsjhk periods only are known. For example,
if the maximum periods of the components are 2 and 4 as above, then the lowest
common multiple is 4. However, the &ctual periods might be 2 and 3, ie the second
component might not be producing as large a sequence as it could in theory. The
combined period would then be 6. To ensure a large enough estimate, 2 Jim 4 = 8
must be chosen.

The period of the case expression Do:A is more difficult. Basically, if the period
of the chooser is p, then the output of the case can only cycle between at most p
expressions in A. If p is larger than the size of A, then obviously all expressions in A
can affect the output, so the total period is the multiple of all of these, including p
itself. If p is smaller than the size of A, the total period is the multiple of p expressions
chosen from A together with p. We have no way of knowing which p expressions this
will be, so we have to choose the set which yields the maximum multiple.

The period of a recursive loop has been explained above. The 'period' function
keeps a track of all dummy variables it has encountered on its way into an expression,
so that it can deal with loops within loops. The 'period' function is initially called
with the set V empty, and d 0.

$ 8



Here is an example of the period of a simple Boolean loop:

F F

TI

period 0(sv.i&Fv:(FT)) = period ,0(DAFv:(FT))

I.c.m.period1 ,0 0(Apv), periodi. 0(F), period{li0(T)}
=l.c.m.period(, 1 ,(v), 1, 1}

= 21 =2

Once the period and depth of an expression have been found, the sum of these
two values is the time needed to observe all possible behaviour from the expression.
So equivalence between two expressions can been determined by evaluating them for
all possible input combinations for times 0 up to this bound. Although this technique
can be implemented in finite time, for circuits of any complexity it would still take
far too long in practice, since every variable must be given a constant valuation for
these times. We would like to be able to prove equivalence algebraically,

One way of attempting this is to reduce expressions in E into another form
without recursive operators. This is done by making use of the identity:

pv.a = ajv\pzv.o]

This is an expansion of the loop, in which every occurrence of v within the loop
is substituted by the loop itself. In some senses the loop /&v.a is actually the limit
of the series of expansions:

If the period of the loop /v.a is p, the (p + 1)" line of the above series represents
a combinatorial circuit that behaves as the loop does, up until time p, whenupon it
produces bottoms. It is therefore a finite approximation to the loop. If we expand
all loops within an expression in this way, to the maximum period + depth of the
whole expression, then we have formed a new, combinatorial expression that will do
everything that the original expression did, but not repeatedly. This is enough to
decide equivalence or otherwise between expressions.

• I I I mmmm'm=Im I m lm mmmI •l I m9



The expanded expressions are in a set which I shall call E*. E* is like E except
that there are no longer any recursive operators and bottoms may appear. Notice
that we need bottoms to show that an expression is an approximation, and was not
originally a combinatorial circuit anyway. The following functions provide transfor-
mation from E to E*. A formal definition of E* appears in Appendix A.

3.6 DEFINITION reduced : E - E*
dEN

Approximates E expressions to depth d in E*.

reduced(k) 2 k, Vk E S.
reduced(v) L, v, Vv E V.
reduced(Aka) :2 Akreduced-l(a)
reduce((a, 0)) (reduced(Q), reduced(#3))
reduced(ra:A) Dreduced(a): (reduced (A,))i(type(a))
reduced(pv.a) 2 expandd 0.(a)

'Reduce' is actually a trivial function: all it does it find recursive subexpressions
to apply 'expand' (below) to.

3.7 DEFINITION expandd,,, : E - E*
d E N, v E V., y E E

Approximates a loop by expanding d times.

expandd,,,(k) a k, Vk E S.
expandd,.,(w) w, Vw E V., w $ v
expandd,,.,(v) -Ltype(v), d < 0
expandd,.,(v) a expandd,.,,(-Y), d > 0
expandd,., (Aka) a Akexpandd_ ,.,,
expand,,.,((o,,0)) (expandd,.,(0), expandd..,,(03))

. • / . , ,\ize(type(a))

expanddV,.,(0a:A) ,expandd,,,(a): (expandd,,(,)),=
expandd,,., (pw.ct) a expandd,.,,(expand, .,. (a))

'Expand' keeps a record of the loop variable it is currently expanding, the number
of times it has still got to expand it, and the original expression which is used to
replace the loop variable. When it encounters inner loops, the function first expands
them to the required depth before continuing with the expansion of the outer loop.

10

II



Here is an example of the expansion of a double-loop expression:

FV.OATV: (pw.EOa:(AFW, AFV), F)
a

F

-4-- T

Expanded once, this becomes:

O4TDAT-BOOL: (Oa:(AF-BOOL, AF-L O F):
(Oa:(AF13a:(AFLSooL, A&F-1BOOL),
AFO3ATBOOL: (Oa:(AFIBOOL, AF-LBOOL), F)), F)

a

IF T
F

a
La

FF

a JI

I-IT

FF



j

4. Equivalence in E*

In this section I define a series of functions which reduce expressions in E* to a
canonical form. Once in this form, expressions are unique, ie equivalent expressions
are equal.

4.8 DEFINITION pushdown: E* -- + E*
Pushes delays down into an expression.

Vn > 0
pushdown(Ak&...A&.k) - Ak, .. . k. k ,  Vk E S.
pushdown(A,...-k.v) 9 A ... k.V, Vv E V.
pushdown(AA, ...Ak. (a, )) a

(pushdown(Ak, ...Ak.a a), pushdown(Ak, .. .A1 . ))
pushdown(Ak,...Ak.Da:A)

Elpushdown(Ak, ... Ak, a): (pushdown(Ak, ...A, A))."(tYPe())
• pushdown(Ak,...Ak.J.,) a Ak,...Ak.-L-,

4.9 DEFINITION evaluate* : E* - E*

Evaluates an E* expression at time t.

Vn >0

evaluate;(Aa...Akjc) Q k, Vk E S, t _ n

evaluate,(Ak...Ak. ,k) 2 t,-n, Vv E V., t > n

evaluate*(Ak,...At,v) ia kt+,, Vv E V., t < n
evaluate; (A,... AA.-L,) -L_.,, t > n
evaluate*(, . J, 9- ki, t < n

evaluate*((,a, #)) L' (evaluate;(a), evaluate*(O))
evaluate;(ra:A) a Devaluateo(a): (evaluate;(A)...evaluate; (A.I 3.(t~p.( 0))))

E* represents E* restricted to time t. Expressions in E no longer contain delays,
and all variables in such expressions have an index which gives the time (_< t) at which
their value is to be taken. Note however that variables am retained: they are not

* given a constant valuation. So an expression in E* of depth + period d can be
represented by its evaluations in E* to Ed.

Note how 'evaluate*' operates only on expressions in the form produced by 'push-
down', ie with delays at the roots of the expression.

12



4.10 DEFINITION formperm : Et*- Er*
Transforms O'a into constant permutations.

formperm(k) 0 i, Vk E S.
formperm(v,) 2 v", Vv E V.
formperm((a, 0)) * (formperm(a), formperm(fl))
formperm(DOa:(A... A)) a A
formperm(no:(K,,.....Ki-,, Ai,..., A,)) a

formperm (o(A,, a):(Ki)j U ... u (K,. 2 )" U 3typ.(A,) U ... U (A.
where m = size(type(Ai))

K, E xU.es(1
LUs)

formperm(na:(K ...Kn.)) 2 D3formperm(a):(ki ...k)
formperm(_L,) a I,

A permutation is a case expression with all variables moved into the chooser; eg

D(X, (y, z)):
((T, T), JT, T), (F, I BOOL), (/LBOOL, 18OOL), (F, F), (T, F), (F, F), (F, F))

I call case expressions in such a form permutations since they permute their
chooser: for example, if n belongs to the enumerated type (1, 2, 3) then Dn:(2, 3, 1)
has a similar meaning to the mathematical permutation (1,2,3)n. Notice that in
line 4 of the above definition, the identity permutation is removed.

4.11 DEFINITION canon: E*--. Er
Reduces Er to a canonical form.

canon(k) Q k, Vk E S.
canon(vi) a v,, Vv E V,
canon(i.) - -L.
canon((na:A, k)) -Q Da:((Ai, k)...(An, k))
canon((Da:A, v,)) 4Q

contract (Canon (.,t: ( :((A , ( . ,
canon((Ola:A, -L.)) a Da:((I, 1,)...(An, -. ))
canon((Ocx:A, (0, -y)))

canon (1(09 y): (o:((A,, (9 , 1(,),))),)...(A., (,YP-((0",,)))::,(tYP( ))

canon((Da:A,aDP:B)) 2 canon (D : (D f:((A,, B,)...,(A,, i)>I €
(tP())

canon((k,oo:A)) 9 oa:((k, A,)...(k, An))
canon((v,, Do:A)) a

contract (canon ()vt: (Da:(( . A,)... ( (3yp.(.))i, A

canon((I,, Da:A)) al rla:((i._, A,)...(I., A ,))

13



canon(((a, 13,n:A))

canon (0(0, 0): (11 (0)J~ 0i A,) ... ((9typ.((., #))i An)@-tp(* OM)
canon((a, #)) a (a,#P)
canon(Oa:(A...A)) a A
canori(nk:A) q canon(An,))
cano nl(1Uv:.A ) ,2 o r : (c anon(.Al,.',\(S,,. ,))11) ... c anon .(,.,l,,,\ (9,,,,,,,),,1))
canon(O.:.4) - Lty,(A,)

canon(o(a, #).A) contract (canon(oO: (03a:(A.+j ...A..(,+,,>>) ))

where n = size(type(s)), m = size(type(#))

canon(OOa:A:B) P 0a:(canon(nBj:A)...canon(0 Bn:A))

'Canon' operates on E* expressions which have been processed by 'formperm'.
It reduces expressions to a canonical form. The canonical form is that of a single
large permutation, with all input variables paired together in alphabetical order in
the chooser. The chooser is also flattened so that pairs can only occur as the right
hand component of other pairs:

0o(a,, (b,, (c,, (.)))):(Kj,.....K.>

All combinatorial circuits, and therefore all expressions in Et*, can be represented
uniquely in this form. The function 'canon' uses a number of standard though lengthy
transformations on E* to attain this form.

4.12 DEFINITION contract : E*--+ E*
Contracts nested U's into a single 0.

contract(Ovt:1Owj:A,)) a
contract (0 (wt, vt):!; A I ... U A.) Wv < V

contract (O(ve, wt):<(/(), ... (A.)j) y  W > V

contract(O(ug, o):(rwt:A,)) 9
contract (0(wt, (vt, o)):A I U ... U A,) W < v
contract (Dvt: (contract(ua.(Dwc:Ai,l/j=oty*'))) /is=1p0 /]w > V

contract(Oa:(Kl ...K,)) 0 Do:(K1 ... K,)

VK E xU.'s(±us)contract(at:<Ua, #):A,)) a a(v, (,,)):<(Aj, .-(A-),)',

'Canon' expands cases where the chooser is a pair into a case of a single variable
where the expressions in the choice sequence are 'internal' cases of similar form. It
does this so that it can easily determine redundancy. For example, the expression:

(v, v): (K,..... K4)
14



is expanded to:
Dy: (Ov:(KI, K2),'v:(Ks, K4 ))

'Canon' is then called again on the result; inside the outer case operator it substitutes
all occurrences of the outer chooser v by constants:

Gv: (DT:(KI, K2),DF:(Ks, K4 ))

Next the function can simplify the constant-chooser case expressions:

Dv:(K1 , K4 )

The final expression is in the required form. However, in general not all variables
will be eliminated because they are redundant, as in this case. If the original equation
had instead been:

O(w, v):(K, ...-, K 4 )

Then 'canon' would get as far as producing

Dv: (Ow:(K 1 , K2),Ow:(K3, K 4))

But could obviously simplify this no further. This expression is not however in the
required canonical form. The function 'contract' is required to bring the inner case
expressions out once more:

13(v, w):(K,, Ks, K 2, K4 )

Note that 'contract' brings w back into the main chooser in alphabetical order,
so that in this instance the order of the sequence of constants has changed so as to
preserve the sense.

4.13 DEFINITION parse, : E*-- E "

Applies f to the parse-tree of V' expressions

parse1 (k) Q f(k), Vk E S.
parse(vi) 2 f(Vj), Vv E V.
parse/ ((, 0)) Q f ((parse (), parsey())

parse1 (Dt:A) Q f(rparse(o):A)
parsey(_L,) 2 f(-L,)

'Parse' is needed because the function 'canon' expects that, when it is applied
to an expression, the components of that expression are already in canonical form.
That is, it must be applied from the roots of an expression up. 'parsee4 ,,' is the
function which applies 'canon' in this way,

15



The main reason why this is necessary is that 'canon' must float case operators

to the outside of pairs. If the function is given a pair, it must know that there are no

case expressions hidden deep within the pair's structure. Hence it must be applied

from the roots of the pair upward to float any cases up through the structure.

4.14 DEFINITION -
dEN

Gives equivalcnce between two ezpression in E* to depth d.

a 62 parsecn.o (evaluate*(pushdown(a))) = parsec...o(evaluate; (pushdown(O)))

Vt <d

16

_!4

___________ _________ 
_



5. The Equivalence Theorem

5.1 THEOREM a = iff reduced(&) -: reducei(P)
where d e depth(a)+depth(#)+max {periode,o(a ) , periodo,0(0)}

Proof:
There are two stages to the proof - the first is to show that the depth d of

expansion defined above is sufficient to preserve uniqueness of expressions; the second
is to show that equivalence in E* as defined in 4.14 corresponds to equivalence in
E for expanded expressions. This is just a matter of showing that the functions
'pushdown', 'formperm' and 'canon' do not alter the meaning of expressions, and
that the final canonical form is indeed a unique representation of expressions. The
latter is clear from the nature of the form, and from the fact that, if the canonization
functions are indeed correct, then they are certainly able to transform any expression
into the form.

To show the canonization functions are correct, we must prove the validity of
every line of these functions. For example, to show that the line

canon((O:A, k)) Q na:((A, k)...(A , k))

is correct, we must demonstrate that, inE,
(Oa: A, k) =- 13a: ((A,, k) ... (A., k))

This is done by using 'evaluatety' on each side of the equivalence:

evaluate1 ,v(Oa:((Al, k)...(A,,, k))) = evaluatetyv((A,, k))
= (evaluatev (A,), evaluate,,v (k))
= (evaluatety (cra:A), evaluate,v(k))
= evaluatety ((Da: A, k))

For some some i dependant on V; for all V. All lines of the functions 'pushdown',
'formperm', 'canon' and 'contract' can be proved in this way.

The difficult part of the proof is showing the depth of expansion is sufficient.
We must show that no expression in E can produce b sequence of outputs whose
period is greater than that predicted by the 'period' function. An idea of the proof
of the validity of this function for case and pair expressions has already been given, in
section 3.6. But the formal derivation of the period of a recursive expression ought
to be given.

17



- I

Consider a single loop represented by

vt= f(v,_f _

The loop function f depends on only one variable, so that it can do at most p different
things, where p is the size of the type of v. Clearly the period of this function is
therefore at most p. In general a single loop can be represented by

v = f(vg, v-..2 ... t,).

Here the function f depends on n variables, so that its period is at most p".
Now for the case of two loops, one inside the other. We have, for example,

vg= f(Vg..i,wt) 1
where w f

Wt g(wt-z,vg. 1)-

Substituting,
,,, = f(,i,_I,gOwe ,,,,,,_).

This can be rewritten as a single function, say h:

i v, = h~v,_,,w,_,).

Clearly the maximum period of this is pq where p is again the size of the type of v,
and q the size of the type of w. This is indeed the result that 'period' would produce.

This argument can easily be generalized to deal with any number of nested loops
with any number of delays in their feedback.

18



6. Conclusion

Although lengthy, I am reasonably confident of the accuracy of the equivalence
testing process described above. However there are a couple of problems in the
application of this theory which are stili to be overcome.

Complexity
The main cause for concern is in the expansion of E expressions. For non-trivial

circuits with complicated nesting, the expanded expression becomes c2tremey large
very quickly. However, this growth may be limited in a clever implementation of the
expander, by considering that the roots of the expanded expression are all the same.
Hence tree-storage optimization is applicable to reduce the size of the expanued
expression to near the size of the original.

The ideal form in which to implement all the functions described above would of
course be a functional language. A good functional language (see 141) only requires
storage for the root of the expression it is currently processing. This again avoids
the explosion of storage of the expanded expression.

Data Refinement
The theory described can only compare expressions with the-sme inputvariables.

If it is desired to test equivalence between one circuit and another which is thought
to be a data-refinement of the first, then a function must be added around the latter
which converts the original input variables to the new form. For example, it might
be necessary to convert separate read and write lines into a single read/write signal
by use of a case expression.

The Undefined Value
In the equivalence theory, bottoms or tops W be inaccessible to the user; oth-

erwise some of the transformations in functions such as 'canon' are invalid. Any
undefined values needed must therefore be just further type constants and included
in their S,. This may have consequences for how such values are considered by Ella
at the moment.

This concludes the description of the equivalence theory. I would like to
acknowledge the contributions of John Morison, who gave me the idea for the research
in the first place; and Roy Milner and Ian Currie for their constructive ideas and
criticisms during the progress of the work.

Mark Davies, 1988.

19



A. Technical Definitions

A.15 DEFINITION type: E ---+ ×s
Returns the type of its argument.

type(k) 0 *, Vk E S.
type(V) 2B , Vv E V.
type(Akkc) Q type(k)
type((a,/3)) B (type(o),type(0))
type(13&:A) 2 type(Ai)
type(pv.a) 2 type(v)

A.16 DEFINITION size : x9 - K

Returns the cross-product size of a type.

size(s) a #S,, Vs E S

size(s,t) S size(s) x size(t)

A.17 DEFINITION welldefo : E x 2E - B
Ensures correct number and type of expressions in 0 output.

welldeft(a,A) 2 A= (A1,A2,...,A,)
n = size(type(a))
type(A,) = type(A,) Vi,j .

A.18 DEFINITION welidef, : V, x E -
Ensures recursive ezpression is well typed and will not spin.

welldefM(v, cf) B 3s E S s.t. type(a) - s = type(v)
no.(a)

20

. . .. , I I I I I



A.19 DEFINITION no, : E P N
v E V.

Checks there are no undelayed v variables in expression.

no.(k) Q True, Vk E S,
no.(w) - True, Vw E V., w . v
no.(v) Q False
nov(Ako) * nodurr,(a)
no.((o,#)) Q no,(a) A no,(0)
no.(Oa:A) a no,(a) A =*''e(tP*()) (A
no.(pw.-) - no. (a), w 3 v
no.(pv.a) a False

A.20 DEFINITION nodurrn : E - 1l
v E V.

Checks there are no v dummy recursion variables.

nodum,,(k) Q True, Vk E S.
nodum,(w) 2 True, Vw E V0
nodum(Ako) a nodun,(o)
nodum((&, 3)) a nodurn,(o) A nodum,(13)
nodum(Oa:A) * nodum}(o) A A(=tYp()) nodum,,(Aj

nodun,(pw.o) - nodum,,(o), w 0 v
nodurn,(jsv.a) Q False

A.21 DEFINITION x9 is the least set s.t.

S C X8
(s,t) E x8, Vs,t E xs

A.22 DEFINITION Sr is defined for T E x s as follows:

f= *S , Vs . ) . , T ,))

VT,T' X8

A.23 DEFINITION E* is the least set s.t.

S, C E* Vs E S
V, C E* Vs E S
Ako E E* Va E E* Vk E S, s.t. type(o) = s
(a, 0)EE* VaOEE*
l3cr:A E E* Va E E*, VA C E* s.t. wlldef,(a, A))

-, E E* Vs E S

21



B. References

[1) *Sequential Programming Extensions to Ella, with Automatic Transformation
to Structure": J.D.Morison, N.E.Peeling, E.V.Whiting.

121 "Transformations of Ella": E.V.Whiting, D.C.Taylour (in preparation).

(31 Ella Language Reference Manual: Praxis Systems PLC, Bath.

141 Orwell Manual: Programming Research Group, Oxford.

22



ODMWNT CONTROL SHEET

Overall security lssification of sheet ... AI. T. .............................................

(As for as possible this sheet should contain only unclossified inforetion. If it Is necessary to enter
classified information, the box concerned must be orked to indicate the classification e9 (R) (C) or WI)

1. PIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Memorandum 422 X .Cts I c,

I I ~~Unc 1as s if izeos icf

5. Originator's Code (if 6. Originator (Corporate Author) Rame and Location
known) Royal Signals and Radar Establishment

7784000 St Andrews Road, Malvern, Worcestershire WRI4 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) lae and Location

Code (if known)

7. Title

MATHEMATICAL EQUIVALENCE IN A PRIMITIVE ELLA

7a. Title in Foreign Language (in the case of translations)

7b. Presentedt at (for €onlrence nimpers) Title, place and dole of conference

8. Author 1 S.'urname, initialls e Ato 9(b) Authors 3,4... 10. Date PC. rel.

Davies M B IgsAuhr21988.8 2"

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution Statement

Unlimited

Descriptors (or keywords)

L

continue on sooerate iece of eawer

Abtract

The mathematical language L is defined, which represents circuits in a primitive

subset of Ella containing delays, pairing, CASE (multiplexer) expressions, and

recursive or feedback expressions. It is shown how by reduction of expressions
in this language to an approximated finite fori, equivalence between expressions

can be tested in finite time.

. / , , _ _

$380/-8

:1


